The search session has expired. Please query the service again.
In this note we give a direct method to classify all stable forms on as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.
We use the properties of to construct functions associated with the elements of the lagrangian grassmannian (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between and a subset of , equipped with appropriate algebraic and topological structures.
In this paper we find the metric in an explicit shape of special -flat Riemannian spaces , i.e. spaces, which are -planar mapped on flat spaces. In this case it is supposed, that is the cubic structure: .
We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose -cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber...
Currently displaying 1 –
10 of
10