The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 16 of 16

Showing per page

Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles

Simona-Luiza Druţă-Romaniuc (2012)

Czechoslovak Mathematical Journal

We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian...

New hyper-Käahler structures on tangent bundles

Xuerong Qi, Linfen Cao, Xingxiao Li (2014)

Communications in Mathematics

Let ( M , g , J ) be an almost Hermitian manifold, then the tangent bundle T M carries a class of naturally defined almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) . In this paper we give conditions under which these almost hyper-Hermitian structures ( G , J 1 , J 2 , J 3 ) are locally conformal hyper-Kähler. As an application, a family of new hyper-structures is obtained on the tangent bundle of a complex space form. Furthermore, by restricting these almost hyper-Hermitian structures on the unit tangent sphere bundle T 1 M , we obtain a class of almost...

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.

Non-associative geometry and discrete structure of spacetime

Alexander I. Nesterov, Lev Vasilʹevich Sabinin (2000)

Commentationes Mathematicae Universitatis Carolinae

A new mathematical theory, non-associative geometry, providing a unified algebraic description of continuous and discrete spacetime, is introduced.

Currently displaying 1 – 16 of 16

Page 1