The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 60 of 60

Showing per page

An anti-Kählerian Einstein structure on the tangent bundle of a space form

Vasile Oproiu, Neculai Papaghiuc (2005)

Colloquium Mathematicae

In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian structures...

An example of an asymptotically Chow unstable manifold with constant scalar curvature

Hajime Ono, Yuji Sano, Naoto Yotsutani (2012)

Annales de l’institut Fourier

Donaldson proved that if a polarized manifold ( V , L ) has constant scalar curvature Kähler metrics in c 1 ( L ) and its automorphism group Aut ( V , L ) is discrete, ( V , L ) is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where Aut ( V , L ) is not discrete.

Currently displaying 41 – 60 of 60

Previous Page 3