The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
A differential 1-form on a -dimensional manifolds defines a singular contact
structure if the set of points where the contact condition is not satisfied,
, is nowhere dense in . Then
is a hypersurface with singularities and the restriction of to can be
defined. Our first theorem states that in the holomorphic, real-analytic, and smooth
categories the germ of Pfaffian equation generated by is determined,
up to a diffeomorphism, by its restriction to , if we eliminate certain degenerated
singularities...
We study invariant contact -spheres on principal circle-bundles and solve the
corresponding existence problem in dimension 3. Moreover, we show that contact -
spheres can only exist on -dimensional manifolds and we construct examples of
contact -spheres on such manifolds. We also consider relations between tautness and
roundness, a regularity property concerning the Reeb vector fields of the contact forms
in a contact -sphere.
We study slant curves in contact Riemannian 3-manifolds with pseudo-Hermitian proper mean curvature vector field and pseudo-Hermitian harmonic mean curvature vector field for the Tanaka-Webster connection in the tangent and normal bundles, respectively. We also study slant curves of pseudo-Hermitian AW(k)-type.
Nous étudions les aspects infinitésimaux du problème suivant. Soit un hamiltonien de dont la surface d’énergie borde un domaine compact et étoilé de volume identique à celui de la boule unité de . La surface d’énergie contient-elle une orbite périodique du système hamiltoniendont l’action soit au plus ?
Let be a Riemann surface. Let be the -dimensional hyperbolic space and let be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping . If is a convex immersion, and if is its exterior normal vector field, we define the Gauss lifting, , of by . Let be the Gauss-Minkowski mapping. A solution to the Plateau problem is a convex immersion of constant Gaussian curvature equal to such that the Gauss lifting is complete and . In this paper, we show...
Let be a complex manifold with strongly pseudoconvex boundary . If is a defining function for , then is plurisubharmonic on a neighborhood of in , and the (real)
2-form is a symplectic structure on the complement of in a neighborhood of in ; it blows up along .
The Poisson structure obtained by inverting extends smoothly across and determines a contact structure on which is the same as the one induced by the complex structure. When is compact, the Poisson structure near...
Let be the space of linear differential operators on weighted densities from to as module over the orthosymplectic Lie superalgebra , where , is the space of tensor densities of degree on the supercircle . We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.
Currently displaying 41 –
60 of
82