Retracts and homotopies for multi-maps
We show that every retral continuum with the fixed point property is locally connected. It follows that an indecomposable continuum with the fixed point property is not a retract of a topological group.
Let , and denote the -groups of integer-valued, rational-valued and real-valued continuous functions on a topological space , respectively. Characterizations are given for the extensions to be rigid, major, and dense.
We prove that a Hausdorff space is locally compact if and only if its topology coincides with the weak topology induced by . It is shown that for a Hausdorff space , there exists a locally compact Hausdorff space such that . It is also shown that for locally compact spaces and , if and only if . Prime ideals in are uniquely represented by a class of prime ideals in . -compact spaces are introduced and it turns out that a locally compact space is -compact if and only if every...
The ring of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring of all continuous functions and, similarly, the ring of all Borel measurable subsets of is a sequential ring completion of the subring of all finite unions of half-open intervals; the two completions are not categorical. We study -rings of maps and develop a completion theory covering the two examples. In particular, the -fields of sets form an epireflective...
We apply the work of Bourgain, Fremlin and Talagrand on compact subsets of the first Baire class to show new results about ϕ-types for ϕ NIP. In particular, we show that if M is a countable model, then an M-invariant ϕ-type is Borel-definable. Also, the space of M-invariant ϕ-types is a Rosenthal compactum, which implies a number of topological tameness properties.
For a continuous map on a topological graph containing a loop it is possible to define the degree (with respect to the loop ) and, for a map of degree , rotation numbers. We study the rotation set of these maps and the periods of periodic points having a given rotation number. We show that, if the graph has a single loop then the set of rotation numbers of points in has some properties similar to the rotation set of a circle map; in particular it is a compact interval and for every rational...