Displaying 781 – 800 of 8496

Showing per page

A weakly chainable uniquely arcwise connected continuum without the fixed point property

Mirosław Sobolewski (2015)

Fundamenta Mathematicae

A continuum is a metric compact connected space. A continuum is chainable if it is an inverse limit of arcs. A continuum is weakly chainable if it is a continuous image of a chainable continuum. A space X is uniquely arcwise connected if any two points in X are the endpoints of a unique arc in X. D. P. Bellamy asked whether if X is a weakly chainable uniquely arcwise connected continuum then every mapping f: X → X has a fixed point. We give a counterexample.

A β -normal Tychonoff space which is not normal

Eva Murtinová (2002)

Commentationes Mathematicae Universitatis Carolinae

α -normality and β -normality are properties generalizing normality of topological spaces. They consist in separating dense subsets of closed disjoint sets. We construct an example of a Tychonoff β -normal non-normal space and an example of a Hausdorff α -normal non-regular space.

AANR spaces and absolute retracts for tree-like continua

Janusz Jerzy Charatonik, Janusz R. Prajs (2005)

Czechoslovak Mathematical Journal

Continua that are approximative absolute neighborhood retracts (AANR’s) are characterized as absolute terminal retracts, i.e., retracts of continua in which they are embedded as terminal subcontinua. This implies that any AANR continuum has a dense arc component, and that any ANR continuum is an absolute terminal retract. It is proved that each absolute retract for any of the classes of: tree-like continua, λ -dendroids, dendroids, arc-like continua and arc-like λ -dendroids is an approximative absolute...

AB-compacta

Isaac Gorelic, István Juhász (2008)

Commentationes Mathematicae Universitatis Carolinae

Abelian pro-countable groups and orbit equivalence relations

Maciej Malicki (2016)

Fundamenta Mathematicae

We study a class of abelian groups that can be defined as Polish pro-countable groups, as non-archimedean groups with a compatible two-sided invariant metric or as quasi-countable groups, i.e., closed subdirect products of countable discrete groups, endowed with the product topology. We show that for every non-locally compact, abelian quasi-countable group G there exists a closed L ≤ G and a closed, non-locally compact K ≤ G/L which is a direct product of discrete countable groups....

About remainders in compactifications of homogeneous spaces

D. Basile, Angelo Bella (2009)

Commentationes Mathematicae Universitatis Carolinae

We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space X , every remainder of X is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.

Currently displaying 781 – 800 of 8496