Displaying 801 – 820 of 867

Showing per page

Countable dense homogeneous filters and the Menger covering property

Dušan Repovš, Lyubomyr Zdomskyy, Shuguo Zhang (2014)

Fundamenta Mathematicae

We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.

Countable fan-tightness versus countable tightness

Aleksander V. Arhangel'skii, Angelo Bella (1996)

Commentationes Mathematicae Universitatis Carolinae

Countable tightness is compared to the stronger notion of countable fan-tightness. In particular, we prove that countable tightness is equivalent to countable fan-tightness in countably compact regular spaces, and that countable fan-tightness is preserved by pseudo-open compact mappings. We also discuss the behaviour of countable tightness and of countable fan-tightness under the product operation.

Countable products of Čech-scattered supercomplete spaces

Aarno Hohti, Zi Qiu Yun (1999)

Czechoslovak Mathematical Journal

We prove by using well-founded trees that a countable product of supercomplete spaces, scattered with respect to Čech-complete subsets, is supercomplete. This result extends results given in [Alstera], [Friedlera], [Frolika], [HohtiPelantb], [Pelanta] and its proof improves that given in [HohtiPelantb].

Countable products of spaces of finite sets

Antonio Avilés (2005)

Fundamenta Mathematicae

We consider the compact spaces σₙ(Γ) of subsets of Γ of cardinality at most n and their countable products. We give a complete classification of their Banach spaces of continuous functions and a partial topological classification.

Countable sums and products of Loeb and selective metric spaces

Horst Herrlich, Kyriakos Keremedis, Eleftherios Tachtsis (2005)

Commentationes Mathematicae Universitatis Carolinae

We investigate the role that weak forms of the axiom of choice play in countable Tychonoff products, as well as countable disjoint unions, of Loeb and selective metric spaces.

Countable tightness in the spaces of regular probability measures

Grzegorz Plebanek, Damian Sobota (2015)

Fundamenta Mathematicae

We prove that if K is a compact space and the space P(K × K) of regular probability measures on K × K has countable tightness in its weak* topology, then L₁(μ) is separable for every μ ∈ P(K). It has been known that such a result is a consequence of Martin's axiom MA(ω₁). Our theorem has several consequences; in particular, it generalizes a theorem due to Bourgain and Todorčević on measures on Rosenthal compacta.

Countable Toronto spaces

Gary Gruenhage, J. Moore (2000)

Fundamenta Mathematicae

A space X is called an α-Toronto space if X is scattered of Cantor-Bendixson rank α and is homeomorphic to each of its subspaces of the same rank. We answer a question of Steprāns by constructing a countable α-Toronto space for each α ≤ ω. We also construct consistent examples of countable α-Toronto spaces for each α < ω 1 .

Countably evaluating homomorphisms on real function algebras

Eva Adam, Peter Biström, Andreas Kriegl (1999)

Archivum Mathematicum

By studying algebra homomorphisms, which act as point evaluations on each countable subset, we obtain improved results on the question when all algebra homomorphisms are point evaluations.

Currently displaying 801 – 820 of 867