Displaying 1141 – 1160 of 8496

Showing per page

Asymptotic fuzzy contractive mappings in fuzzy metric spaces

Dhananjay Gopal, Juan Martínez-Moreno, Rosana Rodríguez-López (2024)

Kybernetika

Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research. However, due to the complexity involved in the nature of fuzzy metrics, the authors need to develop innovative machinery to establish new fixed point theorems in such kind of spaces. In this paper, we propose the concepts of asymptotic fuzzy ψ -contractive and asymptotic fuzzy Meir-Keeler mappings, and describe some new machinery by which the corresponding fixed point theorems are proved. In this sense,...

Atomic compactness for reflexive graphs

Christian Delhommé (1999)

Fundamenta Mathematicae

A first order structure with universe M is atomic compact if every system of atomic formulas with parameters in M is satisfiable in provided each of its finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric) graphs. In particular, we investigate the extent to which “sparse” graphs (i.e. graphs with “few” vertices of “high” degree) are compact with respect to systems of atomic formulas with “few” unknowns, on the one hand, and are pure restrictions of their...

Atomicity of mappings.

Charatonik, Janusz J., Charatonik, Włodzimierz J. (1998)

International Journal of Mathematics and Mathematical Sciences

Attouch-Wets convergence and Kuratowski convergence on compact sets

Paolo Piccione, Rosella Sampalmieri (1995)

Commentationes Mathematicae Universitatis Carolinae

Let X be a locally connected, b -compact metric space and E a closed subset of X . Let 𝔾 be the space of all continuous real-valued functions defined on some closed subsets of E . We prove the equivalence of the τ a w and τ K c topologies on 𝔾 , where τ a w is the so called Attouch-Wets topology, defined in terms of uniform convergence of distance functionals, and τ K c is the topology of Kuratowski convergence on compacta.

Attractors and Inverse Limits.

James Keesling (2008)

RACSAM

This paper surveys some recent results concerning inverse limits of tent maps. The survey concentrates on Ingram’s Conjecture. Some motivation is given for the study of such inverse limits.

Au bord de certains polyèdres hyperboliques

Marc Bourdon (1995)

Annales de l'institut Fourier

Le cadre de cet article est celui des groupes et des espaces hyperboliques de M.  Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...

Aull-paracompactness and strong star-normality of subspaces in topological spaces

Kaori Yamazaki (2004)

Commentationes Mathematicae Universitatis Carolinae

We prove for a subspace Y of a T 1 -space X , Y is (strictly) Aull-paracompact in X and Y is Hausdorff in X if and only if Y is strongly star-normal in X . This result provides affirmative answers to questions of A.V. Arhangel’skii–I.Ju. Gordienko [3] and of A.V. Arhangel’skii [2].

Currently displaying 1141 – 1160 of 8496