The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 42

Showing per page

Characterizations of z -Lindelöf spaces

Ahmad Al-Omari, Takashi Noiri (2017)

Archivum Mathematicum

A topological space ( X , τ ) is said to be z -Lindelöf  [1] if every cover of X by cozero sets of ( X , τ ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z -Lindelöf spaces.

Compact images of spaces with a weaker metric topology

Peng-fei Yan, Cheng Lü (2008)

Czechoslovak Mathematical Journal

If X is a space that can be mapped onto a metric space by a one-to-one mapping, then X is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) Y is a sequence-covering compact image of a space with a weaker metric topology if and only if Y has a sequence { i } i of point-finite c s -covers such that i st ( y , i ) = { y } for each y Y . (2) Y is a sequentially-quotient...

Currently displaying 1 – 20 of 42

Page 1 Next