The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 181 –
200 of
242
In this paper, we prove the existence of the theory of spectral sequences in the category of real semi normed spaces. Using this theory, we associate to any extension of discrete groups the Hochschild-Serre spectral sequence in bounded cohomology with coefficients. In addition, we give the explicit expression of the first and the second term of this spectral sequence without further hypothesis.
Beaucoup d’informations sur les groupes de cohomologie d’un espace sont obtenues à partir de la suite spectrale de Serre. Dans cet article on construit une suite spectrale de Serre dans le cas “non stable”. Cette suite spectrale “non stable” permet des calculs de groupes d’homotopie d’espaces fonctionnels.
Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.
On sait qu’il y a 144 classes d’homotopies d’applications de dans lui-même dont la restriction à est homotope à l’identité: ce sont des exemples d’applications qui induisent l’identité en homologie et en homotopie. Plus généralement, soit un complexe de Poincaré 1-connexe de dimension , qui n’a pas le type d’homotopie rationnelle de : si est formel, nous montrons que le groupe des classes d’homotopies d’applications de dans , dont la restriction au -squelette est homotope à l’identité,...
Nous introduisons une nouvelle définition d’un invariant bicat pour une algèbre de cochaînes connexe et 1-connexe, de type fini sur un corps de caractéristique quelconque, et nous montrons d’une part, qu’il coïncide avec l’invariant cat introduit par S. Halperin et J.-M. Lemaire et d’autre part, qu’il est invariant par extension de corps et qu’il vérifie la conjecture de Ganéa.
Dans cet article nous donnons les formes normales des sytèmes linéaires hamiltoniens antisymétriques accessibles . Nous construisons une stratification et une décomposition cellulaire analytique de , puis nous prouvons que son groupe d’homotopie est isomorphe à celui d’une grassmanienne. Ensuite, nous démontrons que est homotopiquement équivalent à l’espace des systèmes linéaires accessibles. En appliquant ces résultats topologiques, on peut prouver qu’il n’existe pas de paramétrisation continue...
On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe d’un fibré localement trivial dont la fibre-type est une algèbre de Lie ; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.
Currently displaying 181 –
200 of
242