Sur les espaces fonctionnels dont la source est le classifiant d'un groupe de Lie compact commutatif
Nous construisons un feuilletage exotique de classe sur tout fibré hyperbolique de genre . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.
Soient un groupe algébrique complexe réductif et connexe, un sous-groupe de Borel de et un sous-groupe sphérique de . Soit un plongement -équivariant de . Nous savons que n’a qu’un nombre fini d’orbites dans ; nous montrons qu’il n’en a qu’un nombre fini dans . Soit l’adhérence dans d’une orbite de dans et l’adhérence d’une orbite de dans . Si est toroïdal, nous montrons que l’intersection est propre dans et la décrivons ensemblistement. Si de plus est lisse,...
M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...
On montre que sur toute variété de dimension 3 compacte orientable munie d’une action libre de , il existe une forme de contact invariante induisant une 1-forme invariante donnée sur une surface invariante de , si et seulement si et ne s’annulent pas simultanément.
Cet article vise à appliquer certains concepts de la théorie moderne de l’homotopie à la théorie des modèles. En particulier, le concept d’ensemble simplicial est employé pour décrire les formules d’un langage L du premier ordre, les ensembles définissables d’une structure d’interprétation de L, et les espaces de types d’une théorie couchée dans L. On montre qu’à toute structure d’interprétation de L peut être associé un ensemble simplicial, selon une correspondance fonctorielle qui traduit plongements...