Cohomology of Congruence Subgroups of SL (n,Z).
We give a survey of the work of Milnor, Friedlander, Mislin, Suslin and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields.
This paper centers around two basic problems of topological coincidence theory. First, try to measure (with the help of Nielsen and minimum numbers) how far a given pair of maps is from being loose, i.e. from being homotopic to a pair of coincidence free maps. Secondly, describe the set of loose pairs of homotopy classes. We give a brief (and necessarily very incomplete) survey of some old and new advances concerning the first problem. Then we attack the second problem mainly in the setting of homotopy...
On définit le bicomplexe , extension naturelle du complexe engendré par un ensemble simplicial . Ceci permet de définir la notion de ruban de base un cycle de . La somme directe de l’homologie des colonnes de contient, outre l’homologie de , des groupes dans lesquels se trouvent les obstructions à l’existence de rubans. Si est un sous-ensemble simplicial, stable par subdivision, de l’ensemble des simplexes singuliers d’un espace topologique, l’existence de rubans entraîne l’invariance...