Codimension two immersions of oriented Grassmann manifolds.
We provide a simple characterization of codimension two submanifolds of that are of algebraic type, and use this criterion to provide examples of transcendental submanifolds when . If the codimension two submanifold is a nonsingular algebraic subset of whose Zariski closure in is a nonsingular complex algebraic set, then it must be an algebraic complete intersection in .
Nous démontrons des théorèmes de dualité de Poincaré et de de Rham pour la cohomologie basique et l’homologie des courants transverses invariants d’un feuilletage riemannien.
In this paper we compute topological invariants for some configuration spaces of complex projective spaces. We shall describe Sullivan models for these configuration spaces.