The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 440

Showing per page

Combinatorial mapping-torus, branched surfaces and free group automorphisms

François Gautero (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We give a characterization of the geometric automorphisms in a certain class of (not necessarily irreducible) free group automorphisms. When the automorphism is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior singularities. An outer free group automorphism is given by a 1 -cocycle of a 2 -complex (a standard dynamical branched surface, see [7] and [9]) the fundamental group of which is the mapping-torus group of the automorphism. A combinatorial construction elucidates...

Combinatorics and topology - François Jaeger's work in knot theory

Louis H. Kauffman (1999)

Annales de l'institut Fourier

François Jaeger found a number of beautiful connections between combinatorics and the topology of knots and links, culminating in an intricate relationship between link invariants and the Bose-Mesner algebra of an association scheme. This paper gives an introduction to this connection.

Commutators of diffeomorphisms of a manifold with boundary

Tomasz Rybicki (1998)

Annales Polonici Mathematici

A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on C r -diffeomorphisms are included.

Commuting involutions whose fixed point set consists of two special components

Pedro L. Q. Pergher, Rogério de Oliveira (2008)

Fundamenta Mathematicae

Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property when it has the following property: if N m is any smooth closed m-dimensional manifold with m > n and T : N m N m is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces R P 2 n , C P 2 n and H P 2 n , and the connected sum of R P 2 n and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere and n is not...

Currently displaying 221 – 240 of 440