The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2441 – 2460 of 4977

Showing per page

Minimality and unique ergodicity for subgroup actions

Shahar Mozes, Barak Weiss (1998)

Annales de l'institut Fourier

Let G be an -algebraic semisimple group, H an algebraic -subgroup, and Γ a lattice in G . Partially answering a question posed by Hillel Furstenberg in 1972, we prove that if the action of H on G / Γ is minimal, then it is uniquely ergodic. Our proof uses in an essential way Marina Ratner’s classification of probability measures on G / Γ invariant under unipotent elements, and the study of “tubes” in G / Γ .

Minimality of toric arrangements

Giacomo d'Antonio, Emanuele Delucchi (2015)

Journal of the European Mathematical Society

We prove that the complement of a toric arrangement has the homotopy type of a minimal CW-complex. As a corollary we deduce that the integer cohomology of these spaces is torsionfree. We apply discrete Morse theory to the toric Salvetti complex, providing a sequence of cellular collapses that leads to a minimal complex.

Minoration du spectre des variétés hyperboliques de dimension 3

Pierre Jammes (2012)

Bulletin de la Société Mathématique de France

Soit M une variété hyperbolique compacte de dimension 3, de diamètre  d et de volume V . Si on note μ i ( M ) la i -ième valeur propre du laplacien de Hodge-de Rham agissant sur les 1-formes coexactes de M , on montre que μ 1 ( M ) c d 3 e 2 k d et μ k + 1 ( M ) c d 2 , où c > 0 est une constante ne dépendant que de V , et k est le nombre de composantes connexes de la partie mince de M . En outre, on montre que pour toute 3-variété hyperbolique M de volume fini avec cusps, il existe une suite M i de remplissages compacts de M , de diamètre d i + telle que et μ 1 ( M i ) c d i 2 .

Modeling repulsive forces on fibres via knot energies

Simon Blatt, Philipp Reiter (2014)

Molecular Based Mathematical Biology

Modeling of repulsive forces is essential to the understanding of certain bio-physical processes, especially for the motion of DNA molecules. These kinds of phenomena seem to be driven by some sort of “energy” which especially prevents the molecules from strongly bending and forming self-intersections. Inspired by a physical toy model, numerous functionals have been defined during the past twenty-five years that aim at modeling self-avoidance. The general idea is to produce “detangled” curves having...

Modular classes of Q-manifolds: a review and some applications

Andrew James Bruce (2017)

Archivum Mathematicum

A Q-manifold is a supermanifold equipped with an odd vector field that squares to zero. The notion of the modular class of a Q-manifold – which is viewed as the obstruction to the existence of a Q-invariant Berezin volume – is not well know. We review the basic ideas and then apply this technology to various examples, including L -algebroids and higher Poisson manifolds.

Currently displaying 2441 – 2460 of 4977