Contact structures on (n-1)-connected (2n+1)-manifolds
We prove a structure theorem for closed, orientable 5-manifolds with fundamental group and second Stiefel-Whitney class equal to zero on . This structure theorem is then used to construct contact structures on such manifolds by applying contact surgery to fake projective spaces and certain -quotients of .
In this paper we present selected properties of barycentric coordinates in the Euclidean topological space. We prove the topological correspondence between a subset of an affine closed space of εn and the set of vectors created from barycentric coordinates of points of this subset.
We prove that the topological φ-category of a pair (M,N) of topological manifolds is infinite if the algebraic φ-category of the pair of fundamental groups (π₁(M),π₁(N)) is infinite. Some immediate consequences of this fact are also pointed out.
In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.