Géométries modèles de dimension trois
On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.
On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.
This is a survey about Thurston’s geometrization conjecture of three manifolds and Perelman’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as some results in topology relevants for the proof.
In this paper we show to what extent the closed, singular 2-forms are represented, up to the smooth equivalence, by their restrictions to the corresponding singularity set. In the normalization procedure of the singularity set we find the sufficient conditions for the given closed 2-form to be a pullback of the classical Darboux form. We also find the classification list of simple singularities of the maximal isotropic submanifold-germs in the codimension one Martinet's singular symplectic structures....
The article deals with spaces the geometry of which is defined by cyclic and anticyclic algebras. Arbitrary multiplicative function is taken as a fundamental form. Motions are given as linear transformation preserving given multiplicative function.
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds. A C¹ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the h-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.