The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Le sujet de cet article est le groupe de Picard de la variété de modules des faisceaux algébriques semi-stables de rang et de classes de Chern sur . Le premier résultat est que est localement factorielle, ce qui permet d’identifier Pic et le groupe des classes d’équivalence linéaire des diviseurs de Weil de . Il existe une unique application telle que dim si et seulement si . Si on a égalité, Pic est isomorphe à , et si l’inégalité est stricte, Pic est isomorphe à . On donne ensuite...
Currently displaying 1 –
9 of
9