The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function , where G is a finite nontrivial group acting freely and orthogonally on . Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk’s Antipodal Theorem for equivariant maps of joins of G-sets.
In this paper we study the hypersurfaces given as connected compact regular fibers of a differentiable map , in the cases in which has finitely many nondegenerate critical points in the unbounded component of .
It is known that cyclic configurations of a planar polygonal linkage are critical points of the signed area function. In the paper we give an explicit formula of the Morse index for the signed area of a cyclic configuration. We show that it depends not only on the combinatorics of a cyclic configuration, but also on its metric properties.
We extend the constructions and results of Damian to get topological obstructions to the existence of closed monotone Lagrangian embeddings into the cotangent bundle of a space which is the total space of a fibration over the circle.
Currently displaying 21 –
40 of
76