The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
225
The Penrose transform gives an isomorphism between the kernel of the -Dirac operator over an affine subset and the third sheaf cohomology group on the twistor space. In the paper we give an integral formula which realizes the isomorphism and decompose the kernel as a module of the Levi factor of the parabolic subgroup. This gives a new insight into the structure of the kernel of the operator.
We prove that the Poincaré map has at least fixed points (whose trajectories are contained inside the segment W) where the homeomorphism is given by the segment W.
We study the existence of spatial periodic solutions for nonlinear elliptic equations where is a continuous function, nondecreasing w.r.t. . We give necessary and sufficient conditions for the existence of periodic solutions. Some cases with nonincreasing functions are investigated as well. As an application we analyze the mathematical model of electron beam focusing system and we prove the existence of positive periodic solutions for the envelope equation. We present also numerical simulations....
We study the existence of spatial periodic solutions for nonlinear
elliptic equations
where g is a continuous function, nondecreasing w.r.t. u. We
give necessary and sufficient conditions for the existence of
periodic solutions. Some cases with nonincreasing functions g
are investigated as well. As an application we analyze the
mathematical model of electron beam focusing system and we prove
the existence of positive periodic solutions for the envelope
equation. We present also numerical simulations.
...
By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.
Two theorems about the existence of periodic solutions with prescribed energy for second order Hamiltonian systems are obtained. One gives existence for almost all energies under very natural conditions. The other yields existence for all energies under a further condition.
In this paper, by using the least action principle, Sobolev's inequality and Wirtinger's inequality, some existence theorems are obtained for periodic solutions of second-order Hamiltonian systems with a p-Laplacian under subconvex condition, sublinear growth condition and linear growth condition. Our results generalize and improve those in the literature.
In this paper, we deal with the existence of periodic solutions of the -Laplacian Hamiltonian system
Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.
Currently displaying 21 –
40 of
225