The search session has expired. Please query the service again.
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint -pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the...
In this paper we will give a brief survey of recent regularity results for Fourier integral operators with complex phases. This will include the case of real phase functions. Applications include hyperbolic partial differential equations as well as non-hyperbolic classes of equations. An application to an oblique derivative problem is also given.
We consider perturbations of a stratified medium , where the operator studied is . The function is a perturbation of , which is constant for sufficiently large and satisfies some other conditions. Under certain restrictions on the perturbation , we give results on the Fourier integral operator structure of the scattering matrix. Moreover, we show that we can recover the asymptotic expansion at infinity of from knowledge of and the singularities of the scattering matrix at fixed energy....
Currently displaying 1 –
8 of
8