The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

Propagation des singularités pour les opérateurs différentiels de type principal localement résolubles à coefficients analytiques en dimension 2

Paul Godin (1979)

Annales de l'institut Fourier

Sur une variété analytique paracompacte de dimension 2, on considère un opérateur différentiel P à symbole principal p m analytique vérifiant la condition ( 𝒫 ) de Nirenberg et Treves. En ajoutant une nouvelle variable et en utilisant des estimations a priori de type Carleman, on montre qu’il y a propagation des singularités pour P , dans p m - 1 ( 0 ) , le long des feuilles intégrales du système différentiel engendré par les champs hamiltoniens de Re p m et Im p m .

Propagation of singularities for operators with multiple involutive characteristics

Johannes Sjöstrand (1976)

Annales de l'institut Fourier

Let P be a classical pseudodifferential operator of order m on a paracompact C manifold X . Let p m be the principal symbol and assume that Σ = p m - 1 ( 0 ) is an involutive C sub-manifold of T * X 0 , satisfying a certain transversality condition. We assume that p m vanishes exactly to order M on Σ and that the derivatives of order M satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when M = 2 ). Suppose that a Levi condition is valid for the lower order symbols. If u 𝒟 ' ( X ) , P u C ( X ) , then W F ( u ) is a union...

Propagation of singularities for the wave equation on manifolds with corners

András Vasy (2004/2005)

Séminaire Équations aux dérivées partielles

In this talk we describe the propagation of 𝒞 and Sobolev singularities for the wave equation on 𝒞 manifolds with corners M equipped with a Riemannian metric g . That is, for X = M × t , P = D t 2 - Δ M , and u H loc 1 ( X ) solving P u = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WF b ( u ) is a union of maximally extended generalized broken bicharacteristics. This result is a 𝒞 counterpart of Lebeau’s results for the propagation of analytic singularities on real analytic manifolds with appropriately stratified boundary,...

Currently displaying 1 – 13 of 13

Page 1