The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 221 – 240 of 453

Showing per page

Regular behavior at infinity of stationary measures of stochastic recursion on NA groups

Dariusz Buraczewski, Ewa Damek (2010)

Colloquium Mathematicae

Let N be a simply connected nilpotent Lie group and let S = N ( ) d be a semidirect product, ( ) d acting on N by diagonal automorphisms. Let (Qₙ,Mₙ) be a sequence of i.i.d. random variables with values in S. Under natural conditions, including contractivity in the mean, there is a unique stationary measure ν on N for the Markov process Xₙ = MₙXn-1 + Qₙ. We prove that for an appropriate homogeneous norm on N there is χ₀ such that l i m t t χ ν x : | x | > t = C > 0 . In particular, this applies to classical Poisson kernels on symmetric spaces,...

Regular potentials of additive functionals in semidynamical systems

Nedra Belhaj Rhouma, Mounir Bezzarga (2004)

Commentationes Mathematicae Universitatis Carolinae

We consider a semidynamical system ( X , , Φ , w ) . We introduce the cone 𝔸 of continuous additive functionals defined on X and the cone 𝒫 of regular potentials. We define an order relation “ ” on 𝔸 and a specific order “ ” on 𝒫 . We will investigate the properties of 𝔸 and 𝒫 and we will establish the relationship between the two cones.

Régularité Besov des trajectoires du processus intégral de Skorokhod

Gérard Lorang (1996)

Studia Mathematica

Let W t : 0 t 1 be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process u t : 0 t 1 belonging to the space 2 , 1 (see Definition II.2). The Skorokhod integral U t = ʃ 0 t u δ W is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process t U t . More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and u p , 1 with 1/α < p < ∞, then a.s. t U t p , q α for all q ∈ [1,∞], and t U t p , α , 0 . (2) For every even integer p ≥...

Régularité Besov-Orlicz du temps local Brownien

Yue Hu, Mohamed Mellouk (2000)

Studia Mathematica

Let ( B t , t [ 0 , 1 ] ) be a linear Brownian motion starting from 0 and denote by ( L t ( x ) , t 0 , x ) its local time. We prove that the spatial trajectories of the Brownian local time have the same Besov-Orlicz regularity as the Brownian motion itself (i.e. for all t>0, a.s. the function x L t ( x ) belongs to the Besov-Orlicz space B M 2 , 1 / 2 with M 2 ( x ) = e | x | 2 - 1 ). Our result is optimal.

Currently displaying 221 – 240 of 453