The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 421 –
440 of
662
In this paper we generalize Wiener’s characterization of continuous measures to compact homogenous manifolds. In particular, we give necessary and sufficient conditions on probability measures on compact semisimple Lie groups and nilmanifolds to be continuous. The methods use only simple properties of heat kernels.
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
The notion of a contraction mapping for a probabilistic metric space recently introduced by T. L. Hicks is compared with the notion previously introduced by V. L. Sehgal and A. T. Bharucha-Reid. By means of appropriate examples, it is shown that these two notions are independent. It is further shown that every Hick's contraction on a PM space (S,F,tW) is an ordinary metric contraction with respect to a naturally defined metric on that space; and it is again pointed out that, in Menger spaces under...
A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.
Currently displaying 421 –
440 of
662