The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 101 – 120 of 457

Showing per page

Convex hulls, Sticky particle dynamics and Pressure-less gas system

Octave Moutsinga (2008)

Annales mathématiques Blaise Pascal

We introduce a new condition which extends the definition of sticky particle dynamics to the case of discontinuous initial velocities u 0 with negative jumps. We show the existence of a stochastic process and a forward flow φ satisfying X s + t = φ ( X s , t , P s , u s ) and d X t = E [ u 0 ( X 0 ) / X t ] d t , where P s = P X s - 1 is the law of X s and u s ( x ) = E [ u 0 ( X 0 ) / X s = x ] is the velocity of particle x at time s 0 . Results on the flow characterization and Lipschitz continuity are also given.Moreover, the map ( x , t ) M ( x , t ) : = P ( X t x ) is the entropy solution of a scalar conservation law t M + x ( A ( M ) ) = 0 where the flux A represents the particles...

Decomposition of two parameter martingales.

David Nualart Rodón (1981)

Stochastica

In this paper we exhibit some decompositions in orthogonal stochastic integrals of two-parameter square integrable martingales adapted to a Brownian sheet which generalize the representation theorem of E. Wong and M. Zakai ([6]). Concretely, a development in a series of multiple stochastic integrals is obtained for such martingales. These results are applied for the characterization of martingales of path independent variation.

Currently displaying 101 – 120 of 457