Displaying 461 – 480 of 590

Showing per page

Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

In this continuation of the preceding paper (Part I), we consider a sequence ( F ) n 0 of i.i.d. random Lipschitz mappings → , where is a proper metric space. We investigate existence and uniqueness of invariant measures, as well as recurrence and ergodicity of the induced stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . The main results concern the case when the associated Lipschitz constants are log-centered. Principal tools are local contractivity, as considered in detail in Part I, the Chacon-Ornstein...

Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

Consider a proper metric space and a sequence ( F ) n 0 of i.i.d. random continuous mappings → . It induces the stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process. In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic...

Stochastic foundations of the universal dielectric response

Agnieszka Jurlewicz (2003)

Applicationes Mathematicae

We present a probabilistic model of the microscopic scenario of dielectric relaxation. We prove a limit theorem for random sums of a special type that appear in the model. By means of the theorem, we show that the presented approach to relaxation phenomena leads to the well known Havriliak-Negami empirical dielectric response provided the physical quantities in the relaxation scheme have heavy-tailed distributions. The mathematical model, presented here in the context of dielectric relaxation, can...

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Sul problema del ritorno all’equilibrio

Kai Lai Chung (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera, sul gruppo degli interi, una passeggiata aleatoria uscente dall’origine, i cui passi ammettano due soli possibili valori: uno strettamente negativo, l’altro strettamente positivo. Nel caso particolare in cui il primo di questi valori sia - 1 , si dà un’espressione esplicita per la legge del primo istante di ritorno nell’origine.

Sur la convergence faible des systèmes dynamiques échantillonnés

Nadine Guillotin-Plantard (2004)

Annales de l’institut Fourier

Soit T α la rotation sur le cercle d’angle irrationnel α , soit ( S k ) k 0 une marche aléatoire transiente sur . Soit f L 2 ( μ ) et H ] 0 , 1 [ , nous étudions la convergence faible de la suite 1 n H k = 0 [ n t ] - 1 f T α S k , n 1 .

Sur la somme des quotients partiels du développement en fraction continue

D. Barbolosi, C. Faivre (2001)

Colloquium Mathematicae

Let [0;a₁(x),a₂(x),…] be the regular continued fraction expansion of an irrational x ∈ [0,1]. We prove mainly that, for α > 0, β ≥ 0 and for almost all x ∈ [0,1], l i m n ( a ( x ) + + a ( x ) ) / n l o g n = α / l o g 2 if α < 1 and β ≥ 0, l i m n ( a ( x ) + + a ( x ) ) / n l o g n = 1 / l o g 2 if α = 1 and β < 1, and, if α > 1 or α = 1 and β >1, l i m i n f n ( a ( x ) + + a ( x ) ) / n l o g n = 1 / l o g 2 , l i m s u p n ( a ( x ) + + a ( x ) ) / n l o g n = , where a i ( x ) = a i ( x ) if a i ( x ) n α l o g β n and a i ( x ) = 0 otherwise, for all i ∈ 1,…,n.

Currently displaying 461 – 480 of 590