The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In analogy to the analyticity condition , t > 0, for a continuous time semigroup , a bounded operator T is called analytic if the discrete time semigroup satisfies , n ∈ ℕ. We generalize O. Nevanlinna’s characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that is small enough for some , then the type of the semigroup also controls the analyticity of S in the sense that , n ∈ ℕ. As an application we generalize...
The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.
Nous montrons que toute probabilité de transition sur un espace mesurable correspondant à une chaîne de Markov vérifiant la condition de récurrence de Harris, admet au moins un opérateur potentiel positif ; à partir de là, nous développons une théorie du “potentiel logarithmique” pour ces probabilités de transition, en étudiant notamment de manière approfondie un cône de fonctions dites spéciales.
Currently displaying 1 –
13 of
13