A new approach to mutual information
A new expression as a certain asymptotic limit via "discrete micro-states" of permutations is provided for the mutual information of both continuous and discrete random variables.
A new expression as a certain asymptotic limit via "discrete micro-states" of permutations is provided for the mutual information of both continuous and discrete random variables.
A new concept of mutual pressure is introduced for potential functions on both continuous and discrete compound spaces via discrete micro-states of permutations, and its relations with the usual pressure and the mutual information are established. This paper is a continuation of the paper of Hiai and Petz in Banach Center Publications, Vol. 78.
A characterization of geometric distribution is given, which is based on the ratio of the real and imaginary part of the characteristic function.
In this paper, we introduce a general family of continuous lifetime distributions by compounding any continuous distribution and the Poisson-Lindley distribution. It is more flexible than several recently introduced lifetime distributions. The failure rate functions of our family can be increasing, decreasing, bathtub shaped and unimodal shaped. Several properties of this family are investigated including shape characteristics of the probability density, moments, order statistics, (reversed) residual...
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of is distributed on the plane of in an easy manner, and providing the generalization of this result to dimensions.
We prove a new large deviation inequality with applications when projecting a density on a wavelet basis.
In this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers 50 (2007) 639–647]...
In this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers50 (2007) 639–647]...
A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley- family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function,...