Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods
In this paper a variable neighborhood search (VNS) approach for the task assignment problem (TAP) is considered. An appropriate neighborhood scheme along with a shaking operator and local search procedure are constructed specifically for this problem. The computational results are presented for the instances from the literature, and compared to optimal solutions obtained by the CPLEX solver and heuristic solutions generated by the genetic algorithm. It can be seen that the proposed VNS approach reaches...
We prove the existence of a sequence satisfying , where f is a function whose second order Fréchet derivative ∇²f satifies a center-Hölder condition and F is a set-valued map from a Banach space X to the subsets of a Banach space Y. We show that the convergence of this method is superquadratic.
A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points...
After recalling previous work on probability generating functions for real valued random variables we extend to these random variables uniform laws of large numbers and functional limit theorem for the empirical probability generating function. We present an application to the study of continuous laws, namely, estimation of parameters of Gaussian, gamma and uniform laws by means of a minimum contrast estimator that uses the empirical probability generating function of the sample. We test the procedure...
In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.