The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 321 –
340 of
1956
The Fourier problem on planar domains with time variable boundary is considered using integral equations. A simple numerical method for the integral equation is described and the convergence of the method is proved. It is shown how to approximate the solution of the Fourier problem and how to estimate the error. A numerical example is given.
We examine a heterogeneous alternating-direction method for the approximate solution of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challenging from a computational point of view. The heterogeneous alternating-direction scheme combines a spectral Galerkin method for...
A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order...
The newly developed unifying discontinuous formulation named the correction procedure via
reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes
equations for 3D mixed grids. In the current development, tetrahedrons and triangular
prisms are considered. The CPR method can unify several popular high order methods
including the discontinuous Galerkin and the spectral volume methods into a more efficient
differential form....
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type
approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a
turbidity current model. The main difficulties come from the nonconservative nature of the
system. A general strategy to derive simple approximate Riemann solvers for
nonconservative systems is introduced, which is applied to the turbidity current model to
obtain two different...
The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the ill-conditioning is proposed and the modified problem is solved efficiently by a continuation method.
Currently displaying 321 –
340 of
1956