The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 341 –
360 of
9187
A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order...
The newly developed unifying discontinuous formulation named the correction procedure via
reconstruction (CPR) for conservation laws is extended to solve the Navier-Stokes
equations for 3D mixed grids. In the current development, tetrahedrons and triangular
prisms are considered. The CPR method can unify several popular high order methods
including the discontinuous Galerkin and the spectral volume methods into a more efficient
differential form....
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity...
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type
approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a
turbidity current model. The main difficulties come from the nonconservative nature of the
system. A general strategy to derive simple approximate Riemann solvers for
nonconservative systems is introduced, which is applied to the turbidity current model to
obtain two different...
The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the ill-conditioning is proposed and the modified problem is solved efficiently by a continuation method.
In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation of the Jacobian matrix , such that . This property allows us to solve a linear least squares problem, minimizing instead of solving the normal equation , where is the required direction vector. Computational experiments confirm the efficiency of the new method.
The invasive capability is fundamental in determining the malignancy of a solid tumor.
Revealing biomedical strategies that are able to partially decrease cancer invasiveness is
therefore an important approach in the treatment of the disease and has given rise to
multiple in vitro and in silico models. We here develop
a hybrid computational framework, whose aim is to characterize the effects of the
different cellular and subcellular mechanisms involved...
The present paper is devoted to the computation of single phase or two phase flows using the single-fluid approach. Governing equations rely on Euler equations which may be supplemented by conservation laws for mass species. Emphasis is given on numerical modelling with help of Godunov scheme or an approximate form of Godunov scheme called VFRoe-ncv based on velocity and pressure variables. Three distinct classes of closure laws to express the internal energy in terms of pressure, density and additional...
The present paper is devoted to the computation of single phase or
two phase flows using the single-fluid approach. Governing equations
rely on Euler equations which may be supplemented by conservation
laws for mass species. Emphasis is given on numerical modelling
with help of Godunov scheme or an approximate form of Godunov scheme
called VFRoe-ncv based on velocity and pressure variables. Three
distinct classes of closure laws to express the internal energy in
terms of pressure, density...
Currently displaying 341 –
360 of
9187