A hybrid-extragradient scheme for system of equilibrium problems, nonexpansive mappings, and monotone mappings.
In this paper we present a numerical study of the hyperbolic model for convection-diffusion transport problems that has been recently proposed by the authors. This model avoids the infinite speed paradox, inherent to the standard parabolic model and introduces a new parameter called relaxation time. This parameter plays the role of an “inertia” for the movement of the pollutant. The analysis presented herein is twofold: first, we perform an accurate study of the 1D steady-state equations and its...
In this paper we deal with a semilinear hyperbolic chemotaxis model in one space dimension evolving on a network, with suitable transmission conditions at nodes. This framework is motivated by tissue-engineering scaffolds used for improving wound healing. We introduce a numerical scheme, which guarantees global mass densities conservation. Moreover our scheme is able to yield a correct approximation of the effects of the source term at equilibrium. Several numerical tests are presented to show the...
We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge − Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson − Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the...
A Legendre spectral collocation method is presented for the solution of the biharmonic Dirichlet problem on a square. The solution and its Laplacian are approximated using the set of basis functions suggested by Shen, which are linear combinations of Legendre polynomials. A Schur complement approach is used to reduce the resulting linear system to one involving the approximation of the Laplacian of the solution on the two vertical sides of the square. The Schur complement system is solved by a...
This paper examines a linear extrapolation time-discretization of a phase relaxation model with temperature dependent convection and reaction. The model consists of a diffusion-advection PDE for temperature and an ODE with double obstacle for phase variable. Under a stability constraint, this scheme is shown to converge with optimal orders for temperature and enthalpy, and for heat flux as time-step .
In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...