On the Chaplyghin method for generalized solutions of partial differential functional equations.
Analyzing the validity and success of a data assimilation algorithmwhen some state variable observations are not available is an important problem in meteorology and engineering. We present an improved data assimilation algorithm for recovering the exact full reference solution (i.e. the velocity and temperature) of the 3D Planetary Geostrophic model, at an exponential rate in time, by employing coarse spatial mesh observations of the temperature alone. This provides, in the case of this paradigm,...
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
Many iterative methods for the solution of linear discrete ill-posed problems with a large matrix require the computed approximate solutions to be orthogonal to the null space of the matrix. We show that when the desired solution is not smooth, it may be possible to determine meaningful approximate solutions with less computational work by not imposing this orthogonality condition.
Error estimates for the mixed finite element solution of 4th order elliptic problems with variable coefficients, which, in the particular case of aniso-/ortho-/isotropic plate bending problems, gives a direct, simultaneous approximation to bending moment tensor field and displacement field 'u', have been developed considering the combined effect of boundary approximation and numerical integration.
The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
The paper deals with the computation of Aden functions. It gives estimates of errors for the computation of Aden functions by downward reccurence.
Properties satisfied by the moments of the partial non-central -square distribution function, also known as Nuttall Q-functions, and methods for computing these moments are discussed in this paper. The Nuttall Q-function is involved in the study of a variety of problems in different fields, as for example digital communications.
The paper deals with the computation of Riccati-Bessel functions. A modification of Miller method is presented together with estimates of relative errors.
The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the numerical solution and yields false...
The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation ut + uux = u,u(x,0) = u0(x), which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the...