Displaying 621 – 640 of 9149

Showing per page

A note on a class of equilibrium problems with equilibrium constraints

Jiří V. Outrata (2004)

Kybernetika

The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.

A note on a discrete form of Friedrichs' inequality

Libor Čermák (1983)

Aplikace matematiky

The proof of the Friedrichs' inequality on the class of finite dimensional spaces used in the finite element method is given. In particular, the approximate spaces generated by simplicial isoparametric elements are considered.

A note on certain ergodicity coeflcients

Francesco Tudisco (2015)

Special Matrices

We investigate two ergodicity coefficients ɸ ∥∥ and τn−1, originally introduced to bound the subdominant eigenvalues of nonnegative matrices. The former has been generalized to complex matrices in recent years and several properties for such generalized version have been shown so far.We provide a further result concerning the limit of its powers. Then we propose a generalization of the second coefficient τ n−1 and we show that, under mild conditions, it can be used to recast the eigenvector problem...

A note on contact shape optimization with semicoercive state problems

Jaroslav Haslinger (2002)

Applications of Mathematics

This note deals with contact shape optimization for problems involving “floating” structures. The boundedness of solutions to state problems with respect to admissible domains, which is the basic step in the existence analysis, is a consequence of Korn’s inequality in coercive cases. In semicoercive cases (meaning that floating bodies are admitted), the Korn inequality cannot be directly applied and one has to proceed in another way: to use a decomposition of kinematically admissible functions and...

A note on direct methods for approximations of sparse Hessian matrices

Miroslav Tůma (1988)

Aplikace matematiky

Necessity of computing large sparse Hessian matrices gave birth to many methods for their effective approximation by differences of gradients. We adopt the so-called direct methods for this problem that we faced when developing programs for nonlinear optimization. A new approach used in the frame of symmetric sequential coloring is described. Numerical results illustrate the differences between this method and the popular Powell-Toint method.

Currently displaying 621 – 640 of 9149