Displaying 81 – 100 of 498

Showing per page

Newton's methods for variational inclusions under conditioned Fréchet derivative

Ioannis K. Argyros, Saïd Hilout (2007)

Applicationes Mathematicae

Estimates of the radius of convergence of Newton's methods for variational inclusions in Banach spaces are investigated under a weak Lipschitz condition on the first Fréchet derivative. We establish the linear convergence of Newton's and of a variant of Newton methods using the concepts of pseudo-Lipschitz set-valued map and ω-conditioned Fréchet derivative or the center-Lipschitz condition introduced by the first author.

Newton-type iterative methods for nonlinear ill-posed Hammerstein-type equations

Monnanda Erappa Shobha, Ioannis K. Argyros, Santhosh George (2014)

Applicationes Mathematicae

We use a combination of modified Newton method and Tikhonov regularization to obtain a stable approximate solution for nonlinear ill-posed Hammerstein-type operator equations KF(x) = y. It is assumed that the available data is y δ with | | y - y δ | | δ , K: Z → Y is a bounded linear operator and F: X → Z is a nonlinear operator where X,Y,Z are Hilbert spaces. Two cases of F are considered: where F ' ( x ) - 1 exists (F’(x₀) is the Fréchet derivative of F at an initial guess x₀) and where F is a monotone operator. The parameter...

Nilakantha's accelerated series for π

David Brink (2015)

Acta Arithmetica

We show how the idea behind a formula for π discovered by the Indian mathematician and astronomer Nilakantha (1445-1545) can be developed into a general series acceleration technique which, when applied to the Gregory-Leibniz series, gives the formula π = n = 0 ( ( 5 n + 3 ) n ! ( 2 n ) ! ) / ( 2 n - 1 ( 3 n + 2 ) ! ) with convergence as 13 . 5 - n , in much the same way as the Euler transformation gives π = n = 0 ( 2 n + 1 n ! n ! ) / ( 2 n + 1 ) ! with convergence as 2 - n . Similar transformations lead to other accelerated series for π, including three “BBP-like” formulas, all of which are collected in the Appendix....

Non linear schemes for the heat equation in 1D

Bruno Després (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods....

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...

Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems

Jim Douglas Jr., Juan E. Santos, Dongwoo Sheen, Xiu Ye (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P1, as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H1(Ω)...

Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error

Peter Oswald (2017)

Applications of Mathematics

Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H 1 norm best approximation error estimates for H 2 functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate...

Currently displaying 81 – 100 of 498