The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1061 – 1080 of 1115

Showing per page

Optimization of the domain in elliptic problems by the dual finite element method

Ivan Hlaváček (1985)

Aplikace matematiky

An optimal part of the boundary of a plane domain for the Poisson equation with mixed boundary conditions is to be found. The cost functional is (i) the internal energy, (ii) the norm of the external flux through the unknown boundary. For the numerical solution of the state problem a dual variational formulation - in terms of the gradient of the solution - and spaces of divergence-free piecewise linear finite elements are used. The existence of an optimal domain and some convergence results are...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz Methods for the Bidomain system in electrocardiology

Luca Gerardo-Giorda, Mauro Perego (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in...

Optimum beam design via stochastic programming

Eva Žampachová, Pavel Popela, Michal Mrázek (2010)

Kybernetika

The purpose of the paper is to discuss the applicability of stochastic programming models and methods to civil engineering design problems. In cooperation with experts in civil engineering, the problem concerning an optimal design of beam dimensions has been chosen. The corresponding mathematical model involves an ODE-type constraint, uncertain parameter related to the material characteristics and multiple criteria. As a~result, a~multi-criteria stochastic nonlinear optimization model is obtained....

Option valuation under the VG process by a DG method

Jiří Hozman, Tomáš Tichý (2021)

Applications of Mathematics

The paper presents a discontinuous Galerkin method for solving partial integro-differential equations arising from the European as well as American option pricing when the underlying asset follows an exponential variance gamma process. For practical purposes of numerical solving we introduce the modified option pricing problem resulting from a localization to a bounded domain and an approximation of small jumps, and we discuss the related error estimates. Then we employ a robust numerical procedure...

Order conditions for partitioned Runge-Kutta methods

Zdzisław Jackiewicz, Rossana Vermiglio (2000)

Applications of Mathematics

We illustrate the use of the recent approach by P. Albrecht to the derivation of order conditions for partitioned Runge-Kutta methods for ordinary differential equations.

Currently displaying 1061 – 1080 of 1115