Advances techniques for the direct, numerical solution of Poisson's equation
A finite volume method for the simulation of compressible aerodynamic flows is described. Stabilisation and shock capturing is achieved by the use of an HLLC consistent numerical flux function, with acoustic wave improvement. The method is implemented on an unstructured hybrid mesh in three dimensions. A solution of higher order accuracy is obtained by reconstruction, using an iteratively corrected least squares process, and by a new limiting procedure....
In this paper we present a new theorem for monotone including iteration methods. The conditions for the operators considered are affine-invariant and no topological properties neither of the linear spaces nor of the operators are used. Furthermore, no inverse-isotony is demanded. As examples we treat some systems of nonlinear ordinary differential equations with two-point boundary conditions.
The paper surveys some recent results on iterative aggregation/disaggregation methods (IAD) for computing stationary probability vectors of stochastic matrices and solutions of Leontev linear systems. A particular attention is paid to fast IAD methods.
The paper concerns the possibilities for mathematical modelling of safety related systems (equipment oriented on safety). Some mathematical models have been required by the present European Standards for the railway transport. We are interested in the possibility of using Markov’s models to meet these Standards. In the text an example of using that method in the interlocking equipment life cycle is given. An efficient aggregation/disaggregation method for computing some characteristics of Markov...
We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).
An iterative procedure containing two parameters for solving linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numerical example is given as an illustration.
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.The set of Hausdorff continuous functions is the largest set of interval valued functions to which the ring structure of the set of continuous real functions can be extended. The paper deals with the automation of the algebraic operations for Hausdorff continuous functions using an ultra- arithmetical approach.
We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.
Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt...