An Iteration Scheme for Boundary Value-Alternative Problems.
This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where . The notation represents an interval system of linear equations, where and are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...
In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.
An iterative procedure for systems with matrices originalting from the domain decomposition technique is proposed. The procedure introduces one iteration parameter. The convergence and optimization of the method with respect to the parameter is investigated. The method is intended not as a preconditioner for the CG method but for the independent use.
2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous...
A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation...