The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1701 – 1720 of 9172

Showing per page

Application of a Higher Order Discontinuous Galerkin

A. V. Wolkov, Ch. Hirsch, N. B. Petrovskaya (2011)

Mathematical Modelling of Natural Phenomena

We discuss the issues of implementation of a higher order discontinuous Galerkin (DG) scheme for aerodynamics computations. In recent years a DG method has intensively been studied at Central Aerohydrodynamic Institute (TsAGI) where a computational code has been designed for numerical solution of the 3-D Euler and Navier-Stokes equations. Our discussion is mainly based on the results of the DG study conducted in TsAGI in collaboration with the NUMECA...

Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow

Jiří Mikyška, Tissa H. Illangasekare (2007)

Kybernetika

We have developed a multiphase flow code that has been applied to study the behavior of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation, discretization, and use the model for numerical investigation of sensitivity of the NAPL plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed repeatedly with modified parameters of the Brooks–Corey capillary...

Application of Calderón's inverse problem in civil engineering

Jan Havelka, Jan Sýkora (2018)

Applications of Mathematics

In specific fields of research such as preservation of historical buildings, medical imaging, geophysics and others, it is of particular interest to perform only a non-intrusive boundary measurements. The idea is to obtain comprehensive information about the material properties inside the considered domain while keeping the test sample intact. This paper is focused on such problems, i.e. synthesizing a physical model of interest with a boundary inverse value technique. The forward model is represented...

Application of MCMC to change point detection

Jaromír Antoch, David Legát (2008)

Applications of Mathematics

A nonstandard approach to change point estimation is presented in this paper. Three models with random coefficients and Bayesian approach are used for modelling the year average temperatures measured in Prague Klementinum. The posterior distribution of the change point and other parameters are estimated from the random samples generated by the combination of the Metropolis-Hastings algorithm and the Gibbs sampler.

Application of relaxation scheme to degenerate variational inequalities

Jela Babušíková (2001)

Applications of Mathematics

In this paper we are concerned with the solution of degenerate variational inequalities. To solve this problem numerically, we propose a numerical scheme which is based on the relaxation scheme using non-standard time discretization. The approximate solution on each time level is obtained in the iterative way by solving the corresponding elliptic variational inequalities. The convergence of the method is proved.

Application of Richardson extrapolation with the Crank-Nicolson scheme for multi-dimensional advection

Zlatev, Zahari, Dimov, Ivan, Faragó, István, Georgiev, Krassimir, Havasi, Ágnes, Ostromsky, Tzvetan (2013)

Applications of Mathematics 2013

Multi-dimensional advection terms are an important part of many large-scale mathematical models which arise in different fields of science and engineering. After applying some kind of splitting, these terms can be handled separately from the remaining part of the mathematical model under consideration. It is important to treat the multi-dimensional advection in a sufficiently accurate manner. It is shown in this paper that high order of accuracy can be achieved when the well-known Crank-Nicolson...

Application of Rothe's method to a parabolic inverse problem with nonlocal boundary condition

Yong-Hyok Jo, Myong-Hwan Ri (2022)

Applications of Mathematics

We consider an inverse problem for the determination of a purely time-dependent source in a semilinear parabolic equation with a nonlocal boundary condition. An approximation scheme for the solution together with the well-posedness of the problem with the initial value u 0 H 1 ( Ω ) is presented by means of the Rothe time-discretization method. Further approximation scheme via Rothe’s method is constructed for the problem when u 0 L 2 ( Ω ) and the integral kernel in the nonlocal boundary condition is symmetric.

Currently displaying 1701 – 1720 of 9172