The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...
We present an improvement to the direct flux reconstruction technique for equilibrated flux a posteriori error estimates for one-dimensional problems. The verification of the suggested reconstruction is provided by numerical experiments.
In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup
stability constants is essential. In [Huynh et al., C. R. Acad.
Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient
method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to
minimizing a linear functional under a few linear constraints. These constraints...
We present families of scalar nonconforming finite elements of arbitrary
order with optimal approximation properties on quadrilaterals and
hexahedra. Their vector-valued versions together with a discontinuous
pressure approximation of order form inf-sup stable finite element pairs
of order r for the Stokes problem. The well-known elements by Rannacher
and Turek are recovered in the case r=1. A numerical comparison between
conforming and nonconforming discretisations will be given. Since higher
order...
Currently displaying 1 –
11 of
11