The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
375
We study in this paper the electromagnetic field generated in a
conductor by an alternating current density. The resulting
interface problem (see Bossavit (1993)) between the metal and the
dielectric medium is treated by a mixed–FEM and BEM coupling
method. We prove that our BEM-FEM formulation is well posed and
that it leads to a convergent Galerkin method.
This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the...
This paper proposes and analyzes a BEM-FEM scheme to approximate
a time-harmonic diffusion problem in the plane with non-constant
coefficients in a bounded area. The model is set as a Helmholtz
transmission problem with adsorption and with non-constant
coefficients in a bounded domain. We reformulate the problem as a
four-field system. For the temperature and the heat flux we use
piecewise constant functions and lowest order Raviart-Thomas
elements associated to a triangulation approximating the...
A new numerical method based on fictitious domain methods for shape
optimization problems governed by the Poisson equation is proposed.
The basic idea is to combine the boundary variation technique, in which
the mesh is moving during the optimization, and efficient fictitious
domain preconditioning in the solution of the (adjoint) state equations.
Neumann boundary value problems are solved using an algebraic fictitious
domain method. A mixed formulation based on boundary Lagrange
multipliers is...
We propose a new type of multilevel method for solving eigenvalue problems based on Newton's method. With the proposed iteration method, solving an eigenvalue problem on the finest finite element space is replaced by solving a small scale eigenvalue problem in a coarse space and a sequence of augmented linear problems, derived by Newton step in the corresponding sequence of finite element spaces. This iteration scheme improves overall efficiency of the finite element method for solving eigenvalue...
A multilevel preconditioner based on the abstract framework of the
auxiliary space method, is developed for the mortar method for the
nonconforming P1 finite element or the lowest order
Crouzeix-Raviart finite element on nonmatching grids. It is shown
that the proposed preconditioner is quasi-optimal in the sense that
the condition number of the preconditioned system is independent of
the mesh size, and depends only quadratically on the number of
refinement levels. Some numerical results confirming...
In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution uE of a second order elliptic equation posed in the perturbed domain with respect to the size parameter ε of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of uE based on a multiscale superposition of the unperturbed solution u0 and a profile defined in a model domain. We...
In this paper, multiscale finite element methods (MsFEMs) and domain decomposition techniques are developed for a class of nonlinear elliptic problems with high-contrast coefficients. In the process, existing work on linear problems [Y. Efendiev, J. Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and...
We propose a multiscale model reduction method for partial differential equations. The main purpose of this method is to derive an effective equation for multiscale problems without scale separation. An essential ingredient of our method is to decompose the harmonic coordinates into a smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory part is small. Such a decomposition plays a key role in our construction of the effective equation. We show...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
We consider the numerical approximation of a first order
stationary hyperbolic equation by the method of characteristics with
pseudo time step k using discontinuous finite elements on a mesh
. For this method, we exhibit a “natural” norm || ||h,k
for which we show that the discrete variational problem is well
posed and we
obtain an error estimate. We show that when k goes to zero problem
(resp. the || ||h,k norm)
has as a limit problem (Ph) (resp. the
|| ||h norm) associated to the...
We present a novel approach to solving a specific type of quasilinear boundary value problem with -Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even...
Currently displaying 101 –
120 of
375