The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2041 – 2060 of 2633

Showing per page

The CUDA implementation of the method of lines for the curvature dependent flows

Tomáš Oberhuber, Atsushi Suzuki, Vítězslav Žabka (2011)

Kybernetika

We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the...

The dynamical Lame system : regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input state” map in L 2 -norms is established. A structure of the reachable sets for arbitrary T > 0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The dynamical Lame system: regularity of solutions, boundary controllability and boundary data continuation

M. I. Belishev, I. Lasiecka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The boundary control problem for the dynamical Lame system (isotropic elasticity model) is considered. The continuity of the “input → state" map in L2-norms is established. A structure of the reachable sets for arbitrary T>0 is studied. In general case, only the first component u ( · , T ) of the complete state { u ( · , T ) , u t ( · , T ) } may be controlled, an approximate controllability occurring in the subdomain filled with the shear (slow) waves. The controllability results are applied to the problem of the boundary data continuation....

The dynamics of weakly interacting fronts in an adsorbate-induced phase transition model

Shin-Ichiro Ei, Tohru Tsujikawa (2009)

Kybernetika

Hildebrand et al. (1999) proposed an adsorbate-induced phase transition model. For this model, Takei et al. (2005) found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in 2 and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates...

The energy method for elastic problems with non-homogeneous boundary conditions

Ramon Quintanilla (2002)

International Journal of Applied Mathematics and Computer Science

In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems in a cylinder. A section...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version...

Currently displaying 2041 – 2060 of 2633