Displaying 221 – 240 of 2623

Showing per page

A study of an operator arising in the theory of circular plates

Leopold Herrmann (1988)

Aplikace matematiky

The operator L 0 : D L 0 H H , L 0 u = 1 r d d r r d d r 1 r d d r r d u d r , D L 0 = { u C 4 ( [ 0 , R ] ) , u ' ( 0 ) = u ' ' ' ' ( 0 ) = 0 , u ( R ) = u ' ( R ) = 0 } , H = L 2 , r ( 0 , R ) is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on L 0 (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types L 0 u = g and u t t + L 0 u = g , respectively.

A study of bending waves in infinite and anisotropic plates

Ove Lindblom, Reinhold Näslund, Lars-Erik Persson, Karl-Evert Fällström (1997)

Applications of Mathematics

In this paper we present a unified approach to obtain integral representation formulas for describing the propagation of bending waves in infinite plates. The general anisotropic case is included and both new and well-known formulas are obtained in special cases (e.g. the classical Boussinesq formula). The formulas we have derived have been compared with experimental data and the coincidence is very good in all cases.

A study on global stabilization of periodic orbits in discrete-time chaotic systems by using symbolic dynamics

Masayasu Suzuki, Noboru Sakamoto (2015)

Kybernetika

In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control...

A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

Blanca Ayuso de Dios, Ivan Georgiev, Johannes Kraus, Ludmil Zikatanov (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...

A survey of subpixel edge detection methods for images of heat-emitting metal specimens

Anna Fabijańska (2012)

International Journal of Applied Mathematics and Computer Science

In this paper the problem of accurate edge detection in images of heat-emitting specimens of metals is discussed. The images are provided by the computerized system for high temperature measurements of surface properties of metals and alloys. Subpixel edge detection is applied in the system considered in order to improve the accuracy of surface tension determination. A reconstructive method for subpixel edge detection is introduced. The method uses a Gaussian function in order to reconstruct the...

A thermodynamic approach to nonisothermal phase-field models

Irena Pawłow (2015)

Applicationes Mathematicae

The goal of this paper is to work out a thermodynamical setting for nonisothermal phase-field models with conserved and nonconserved order parameters in thermoelastic materials. Our approach consists in exploiting the second law of thermodynamics in the form of the entropy principle according to I. Müller and I. S. Liu, which leads to the evaluation of the entropy inequality with multipliers. As the main result we obtain a general scheme of phase-field models which involves an...

A three dimensional finite element method for biological active soft tissue formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three dimensional finite element method for biological active soft tissue Formulation in cylindrical polar coordinates

Christian Bourdarias, Stéphane Gerbi, Jacques Ohayon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...

A three-field augmented Lagrangian formulation of unilateral contact problems with cohesive forces

David Doyen, Alexandre Ern, Serge Piperno (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented Lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixed finite element approximations to the stationarity conditions of the three-field augmented Lagrangian....

A two well Liouville theorem

Andrew Lorent (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller. Let H = σ 0 0 σ - 1 for σ > 0 . Let 0 < ζ 1 < 1 < ζ 2 < . Let K : = S O 2 S O 2 H . Let u W 2 , 1 Q 1 0 be a C 1 invertible bilipschitz function with Lip u < ζ 2 , Lip u - 1 < ζ 1 - 1 . There exists positive constants 𝔠 1 < 1 and 𝔠 2 > 1 depending only on σ , ζ 1 , ζ 2 such that if ϵ 0 , 𝔠 1 and u satisfies the...

A Two Well Liouville Theorem

Andrew Lorent (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller.
Let H = σ 0 0 σ - 1 for σ > 0 . Let 0 < ζ 1 < 1 < ζ 2 < . Let K : = S O 2 S O 2 H . Let u W 2 , 1 Q 1 0 be a invertible bilipschitz function with Lip u < ζ 2 , Lip u - 1 < ζ 1 - 1 . 
There exists positive constants 𝔠 1 < 1 and 𝔠 2 > 1 depending only on σ, ζ 1 , ζ 2 such that if ϵ 0 , 𝔠 1 and u satisfies...

Currently displaying 221 – 240 of 2623