The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 221 –
240 of
2633
The operator , , , is shown to be essentially self-adjoint, positive definite with a compact resolvent. The conditions on (in fact, on a general symmetric operator) are given so as to justify the application of the Fourier method for solving the problems of the types and , respectively.
In this paper we present a unified approach to obtain integral representation formulas for describing the propagation of bending waves in infinite plates. The general anisotropic case is included and both new and well-known formulas are obtained in special cases (e.g. the classical Boussinesq formula). The formulas we have derived have been compared with experimental data and the coincidence is very good in all cases.
In this report, a control method for the stabilization of periodic orbits for a class of one- and two-dimensional discrete-time systems that are topologically conjugate to symbolic dynamical systems is proposed and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily small control...
We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...
In this paper the problem of accurate edge detection in images of heat-emitting specimens of metals is discussed. The images are provided by the computerized system for high temperature measurements of surface properties of metals and alloys. Subpixel edge detection is applied in the system considered in order to improve the accuracy of surface tension determination. A reconstructive method for subpixel edge detection is introduced. The method uses a Gaussian function in order to reconstruct the...
The author introduces a global measure of initial deflection given by the energy norm. Solving the formulated minimization problem with a subsidiary condition the most dangerous initial deflection shape is obtained. The theoretical results include a wide range of stability type structural problems.
The goal of this paper is to work out a thermodynamical setting for nonisothermal phase-field models with conserved and nonconserved order parameters in thermoelastic materials. Our approach consists in exploiting the second law of thermodynamics in the form of the entropy principle according to I. Müller and I. S. Liu, which leads to the evaluation of the entropy inequality with multipliers.
As the main result we obtain a general scheme of phase-field models which involves an...
A hyperelastic constitutive law, for use in anatomically accurate finite element models of living structures, is suggested for the passive and the active mechanical properties of incompressible biological tissues. This law considers the passive and active states as a same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and the FE formulations are also presented, and the FE code has been validated and applied to describe...
A hyperelastic constitutive law, for use in anatomically accurate finite element models of
living structures, is suggested for the passive and the active mechanical properties of incompressible
biological tissues. This law considers the passive and active states as a same hyperelastic continuum
medium, and uses an activation function in order to describe the whole contraction phase.
The variational and the FE formulations are also presented, and the FE code has been validated
and applied to describe...
We investigate unilateral contact problems with cohesive forces, leading to
the constrained minimization of a possibly nonconvex functional. We
analyze the mathematical structure of the minimization problem.
The problem is reformulated in terms of a three-field augmented
Lagrangian, and sufficient conditions for the existence of a local
saddle-point are derived. Then, we derive and analyze mixed finite
element approximations to the stationarity conditions of the three-field
augmented Lagrangian....
In this paper we analyse the structure of approximate solutions to the compatible two well problem with the constraint that the surface energy of the solution is less than some fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of Friesecke James Müller.
Let for . Let . Let . Let be a invertible bilipschitz function with , .
There exists positive constants and depending only on , , such that if and satisfies the...
In this paper we analyse the structure of approximate solutions to the compatible
two well problem with the constraint that the surface energy of the solution
is less than some fixed constant. We prove a quantitative estimate that can be seen as
a two well analogue of the Liouville theorem of Friesecke James Müller.
Let for .
Let . Let .
Let be a invertible bilipschitz
function with , .
There exists positive constants and depending only on σ, ,
such that if
and u satisfies...
Currently displaying 221 –
240 of
2633