Displaying 101 – 120 of 220

Showing per page

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an initial brittle bond with their neighbors. Noninterpenetration...

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an...

Il problema monolaterale di contatto dinamico con attrito di una trave su una fondazione alla Hetényi: un approccio agli elementi finiti

Luigi Ascione, Giancarlo Bilotti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

L'ipotesi di contatto monolaterale tra strutture di fondazione e terreno assume un significato importante in tutti quei problemi tecnici, nei quali l'area di contatto tra struttura e fondazione diviene percentualmente piccola, sia per la rigidezza relativa dei corpi a contatto, sia per la condizione di carico, soprattutto in presenza di carichi ribaltanti come possono adesempio essere le forze sismiche. In questo contesto sono stati sviluppati negli ultimi anni diversi studi, che riguadano però...

Iteratively solving a kind of Signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Iteratively solving a kind of signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Least square method for solving contact problems with friction obeying the Coulomb law

Jaroslav Haslinger (1984)

Aplikace matematiky

The paper deals with numerical realization of contact problems with friction obeying the Coulomb law. The original problem is formulated as the fixed-point problem for a certain operator generated by the variational inequality. This inequality is transformed to a system of variational nonlinear equations generating other operators, in a sense "close" to the above one. The fixed-point problem of these operators is solved by the least-square method in which equations and the corresponding quadratic...

Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity

Z. Belhachmi, J.-M. Sac-Epée, S. Tahir (2009)

Mathematical Modelling of Natural Phenomena

We consider mixed and hybrid variational formulations to the linearized elasticity system in domains with cracks. Inequality type conditions are prescribed at the crack faces which results in unilateral contact problems. The variational formulations are extended to the whole domain including the cracks which yields, for each problem, a smooth domain formulation. Mixed finite element methods such as PEERS or BDM methods are designed to avoid locking for nearly incompressible materials in plane elasticity....

Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities

Charalambos C. Baniotopoulos, Jaroslav Haslinger, Zuzana Morávková (2005)

Applications of Mathematics

The paper deals with approximations and the numerical realization of a class of hemivariational inequalities used for modeling of delamination and nonmonotone friction problems. Assumptions guaranteeing convergence of discrete models are verified and numerical results of several model examples computed by a nonsmooth variant of Newton method are presented.

Mesh r-adaptation for unilateral contact problems

Pierre Béal, Jonas Koko, Rachid Touzani (2002)

International Journal of Applied Mathematics and Computer Science

We present a mesh adaptation method by node movement for two-dimensional linear elasticity problems with unilateral contact. The adaptation is based on a hierarchical estimator on finite element edges and the node displacement techniques use an analogy of the mesh topology with a spring network. We show, through numerical examples, the efficiency of the present adaptation method.

Minimization of a convex quadratic function subject to separable conical constraints in granular dynamics

Pospíšil, Lukáš, Dostál, Zdeněk (2015)

Programs and Algorithms of Numerical Mathematics

The numerical solution of granular dynamics problems with Coulomb friction leads to the problem of minimizing a convex quadratic function with semidefinite Hessian subject to a separable conical constraints. In this paper, we are interested in the numerical solution of this problem. We suggest a modification of an active-set optimal quadratic programming algorithm. The number of projection steps is decreased by using a projected Barzilai-Borwein method. In the numerical experiment, we compare our...

Currently displaying 101 – 120 of 220