The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The work is devoted to reaction-diffusion-convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions, to prove existence of convective waves, and to make some conclusions about their stability.
In this short note we give a link between the regularity of the solution to the 3D Navier-Stokes equation and the behavior of the direction of the velocity . It is shown that the control of in a suitable norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based on very...
In the context of the weak solutions of the Navier-Stokes equations we study the regularity of the pressure and its derivatives in the space-time neighbourhood of regular points. We present some global and local conditions under which the regularity is further improved.
Existence of a global attractor for the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe has been shown already. In this paper we prove the higher regularity of the attractor.
J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space are regular.
Currently displaying 1 –
20 of
24