Displaying 321 – 340 of 697

Showing per page

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Mathematical and numerical modelling of piezoelectric sensors

Sebastien Imperiale, Patrick Joly (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation...

Mathematical and numerical studies of non linear ferromagnetic materials

Patrick Joly, Olivier Vacus (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in the numerical modeling of absorbing ferromagnetic materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based on an appropriate modification of Yee's scheme, that we show to preserve some important properties of the continuous...

Mathematical models for laser-plasma interaction

Rémi Sentis (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical models for laser-plasma interaction

Rémi Sentis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematics of Invisibility

Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, Gunther Uhlmann (2007)

Journées Équations aux dérivées partielles

We will describe recent some of the recent theoretical progress on making objects invisible to electromagnetic waves based on singular transformations.

Maxwell’s equations revisited – mental imagery and mathematical symbols

Matthias Geyer, Jan Hausmann, Konrad Kitzing, Madlyn Senkyr, Stefan Siegmund (2023)

Archivum Mathematicum

Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations curl 𝐄 = - 𝐁 t , curl 𝐇 = 𝐃 t + 𝐣 , div 𝐃 = ϱ , div 𝐁 = 0 , which together with the constituting relations 𝐃 = ε 0 𝐄 , 𝐁 = μ 0 𝐇 , form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement...

Meta-optimization of bio-inspired algorithms for antenna array design

Virgilio Zúñiga-Grajeda, Alberto Coronado-Mendoza, Kelly Joel Gurubel-Tun (2018)

Kybernetika

In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the...

Mixed discontinuous Galerkin approximation of the Maxwell operator : the indefinite case

Paul Houston, Ilaria Perugia, Anna Schneebeli, Dominik Schötzau (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present and analyze an interior penalty method for the numerical discretization of the indefinite time-harmonic Maxwell equations in mixed form. The method is based on the mixed discretization of the curl-curl operator developed in [Houston et al., J. Sci. Comp. 22 (2005) 325–356] and can be understood as a non-stabilized variant of the approach proposed in [Perugia et al., Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675–4697]. We show the well-posedness of this approach and derive optimal...

Currently displaying 321 – 340 of 697