The search session has expired. Please query the service again.
Displaying 101 –
120 of
157
The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.
A multiphase generalization of the Monge–Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.
A multiphase generalization of the Monge–Kantorovich optimal
transportation problem is addressed.
Existence of optimal solutions is established.
The optimality equations are related to classical Electrodynamics.
This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...
This paper is concerned with a PDE-constrained optimization problem of induction heating, where the state equations consist of 3D time-dependent heat equations coupled with 3D time-harmonic eddy current equations. The control parameters are given by finite real numbers representing applied alternating voltages which enter the eddy current equations via impressed current. The optimization problem is to find optimal voltages so that, under certain constraints on the voltages and the temperature, a...
We consider electromagnetic waves propagating in a periodic medium characterized by two small scales. We perform the corresponding homogenization process, relying on the modelling by Maxwell partial differential equations.
We deal with an inverse scattering problem whose aim is to determine the thickness variation of a dielectric thin coating located on a conducting structure of unknown shape. The inverse scattering problem is solved through the application of the Generalized Impedance Boundary Conditions (GIBCs) which contain the thickness, curvature as well as material properties of the coating and they have been obtained in the previous work [B. Aslanyürek, H. Haddar and H.Şahintürk, Wave Motion 48 (2011) 681–700]...
We investigate time harmonic Maxwell equations in heterogeneous media, where the
permeability μ and the permittivity ε are piecewise constant. The
associated boundary value problem can be interpreted as a transmission problem.
In
a very natural way the interfaces can have edges and corners. We give a detailed
description of the edge and corner singularities of the electromagnetic fields.
Currently displaying 101 –
120 of
157