The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 121 –
140 of
157
We study the regularity of the solution of the regularized electric Maxwell problem in a polygonal domain with data in . Using a duality method, we prove a decomposition of the solution into a regular part in the non-Hilbertian Sobolev space and an explicit singular one.
The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential and magnetization . In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65–99], the conforming -element in spatial dimensions is shown to...
The magnetization of a ferromagnetic sample solves a
non-convex variational problem, where its relaxation by convexifying
the energy density resolves relevant
macroscopic information.
The numerical analysis of the relaxed model
has to deal with a constrained convex
but degenerated, nonlocal energy functional in mixed formulation for
magnetic potential u and magnetization m.
In [C. Carstensen and A. Prohl, Numer. Math.90
(2001) 65–99], the conforming P1 - (P0)d-element in d=2,3 spatial
dimensions...
Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30The generalization of the concept of derivative to non-integer values goes
back to the beginning of the theory of differential calculus. Nevertheless, its
application in physics and engineering remained unexplored up to the last
two decades. Recent research motivated the establishment of strategies taking advantage of the Fractional Calculus (FC) in the modeling and control
of many phenomena. In fact, many classical engineering...
In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.
The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential satisfying a wave equation with initial-boundary conditions. This description through is rigorously shown to give a unique solution of the problem and is the starting...
In this paper we will study the flux and the divergence of vector in dynamical fields, on the basis of conventional divergence definition and using the conventional method to find the vector flux. We will reveal that vector flux and divergence of vector do not vanish in dynamical fields. In terms of conventional EM field formalism, we will show the changes appearing in dynamical fields.
We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...
Currently displaying 121 –
140 of
157