The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 741 –
760 of
1377
In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...
In this article, we provide a priori error estimates for the spectral and
pseudospectral Fourier (also called planewave) discretizations of the
periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral
discretization of the periodic Kohn-Sham
model, within the local density approximation (LDA). These models
allow to compute approximations of the electronic ground state energy and density
of molecular systems in the condensed phase. The TFW model is strictly
convex with respect to the...
We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability () by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of...
In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime.
Boundary layers are generated from the fact that the incoming kinetic flux might be far
from the thermodynamical equilibrium. In [2], the authors propose a method to compute
numerically the boundary conditions in the hydrodynamic limit relying on an analysis of
the boundary layers....
We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows thenumerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
A Markov process converging to a random state of the 6-vertex model is constructed. It is
used to show that a droplet of c-vertices is created in the antiferromagnetic phase and
that the shape of this droplet has four cusps.
The paper studies the convergence behavior of
Monte Carlo schemes for semiconductors.
A detailed analysis of the systematic error
with respect to numerical parameters is performed.
Different sources of systematic error are pointed out and
illustrated in a spatially one-dimensional test case.
The error with respect to the number of simulation particles
occurs during the calculation of the internal electric field.
The time step error, which is related to the splitting of transport and
electric field...
We consider the hard-core lattice gas model on and investigate its phase structure in high dimensions. We prove that when the intensity parameter exceeds , the model exhibits multiple hard-core measures, thus improving the previous bound of given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of edge cutsets in , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model. We provide a refined combinatorial...
In a cholesteric liquid crystal the director field tends to form a right-angle helicoid around a twist axis in order to minimize the internal energy; however, a fixed alignment of the director field at the boundary (strong anchoring) can give rise to distorted configurations of the director field, as oblique helicoid, in order to save energy. The transition to this distorted configurations depend on the boundary conditions and on the geometry of the liquid crystal, and it is known as Freedericksz...
We consider a mathematical model proposed in [1] for the cristallization of polymers, describing the evolution of temperature, crystalline volume fraction, number and average size of crystals. The model includes a constraint on the crystal volume fraction. Essentially, the model is a system of both second order and first order evolutionary partial differential equations with nonlinear terms which are Lipschitz continuous, as in [1], or Hölder continuous, as in [3]. The main novelty here is the...
We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.
Currently displaying 741 –
760 of
1377