The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 261 –
280 of
303
Modifications to a procedure for determining necessary and sufficient conditions for the existence of a solution to the multi-index problem are described. These modifications reduce the computation required to such an extent that necessary and sufficient conditions for the existence of a solution to the 3x3x3 multi-index problem can now be determined. These conditions are given in this paper.
Given a deterministic optimal control problem (OCP) with value function, say , we introduce a linear program and its dual whose values satisfy . Then we give conditions under which (i) there is no duality gap
This paper proposes a specialized LP-algorithm for a sub problem arising in simple Profit maximising Lot-sizing. The setting involves a single (and multi) item production system with negligible set-up costs/times and limited production capacity. The producer faces a monopolistic market with given time-varying linear demand curves.
En este artículo se obtiene una generalización de la caracterización de los puntos extremos en el poliedro de soluciones factibles del problema estándar de la Programación Lineal. Para ello se usa una extensión del concepto de cara dado por Goldman y Tucker para conos convexos poliédricos que difiere del expuesto en la mayoría de los tratados clásicos (Grünbaum, Mullen-Shepard, Stoer-Witzgall, ...).
Nous présentons, dans cet article, une approche hybride pour la résolution du sac à dos multidimensionnel en variables 0–1. Cette approche combine la programmation linéaire et la méthode tabou. L’algorithme ainsi obtenu améliore de manière significative les meilleurs résultats connus sur des instances jugées difficiles.
We present, in this article, a hybrid approach for
solving
the 0–1 multidimensional knapsack problem (MKP). This approach combines
linear
programming and Tabu search.
The resulting algorithm improves on the best result on many well-known
hard benchmarks.
Currently displaying 261 –
280 of
303